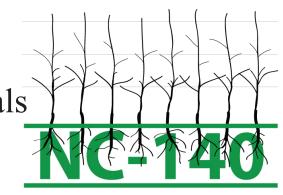
ANNUAL REPORT TO NC-140

2010 Apple Rootstock Trials

November, 2016 -- University Park, PA

Wesley R. Autio


This year was the seventh season of the 2010 NC-140 Apple Rootstock Trials. Data submitted in 2016, however, were for the sixth growing season (2015). All sites, except CO and OH, submitted data, and they were received in an easily read format, but there were a few problems with cooperators following the protocol. **Everyone is encouraged to review their data and make sure that all measurements are the unit requested. Further, include only those data requested in the protocol, with the same columns in the spreadsheet, and in the same order.** All data should be submitted in the format and units requested and by the submission deadline (January 15).

The data to be submitted and the format of the data submission are presented in the Data Submission Protocol on Page 3. Submit these data in Excel spreadsheet format, using the rootstock codes described in the protocol, by **January 15, 2017**.

In 2017, follow the Pruning and Training Plan (Page 2) and the Trial Protocol for 2017 (Page 2).

To avoid problems during the compilation of the data, please pay particular attention to the following points:

- 1. Submit only the data requested.
- 2. Use the correct units.
- 3. <u>Columns must be consistent</u> with the protocol.
- 3. Make sure that all <u>data make sense</u> -- proofread your data set.
- 4. For rootstock and replication designations, follow the protocol exactly -- rootstock names should appear as they are listed in the Data Submission Protocol (Page 3).

Rootstocks, cultivars, and locations involved in the 2010 NC-140 Apple Rootstock Trial. Honeycrisp plantings are spaced 4'x12', and Fuji plantings are spaced 6'x14'. All trees are trained to the Tall Spindle System.

Destates	Honeycrisp	Aztec Fuji
Rootstocks	sites	sites
B.9	BC	СН
B.10	СН	ID
B.7-3-150	CO**	KY
B.7-20-21	IA	NC
B.64-194	MA	NY**
B.67-5-32	MN	PA
B.70-6-8	MI	UT
B.71-7-22	NJ	
G.11	NS	
G.41 N	NY	
G.41 TC	OH**	
G.202 N	WI	
G.202 TC		
G.935 N		
G.935 TC		
CG.2034		
CG.3001		
CG.4003		
CG.4004		
CG.4013		
CG.4214		
CG.4814		
CG.5087		
CG.5222		
PiAu 9-90		
PiAu 51-11		
Supp.3		
M.26 EMLA		
M.9 Pajam2		
M.9 NAKBT337		

Send 2015 data via email to Wes Autio (autio@umass.edu) by

January 15, 2017

Trial Protocol for 2017

Tree management.

- A. Trees must be supported and trained as Tall Spindles (see Pruning & Training Plan, Mature Tree).
- B. Adjust crop load as described in the Pruning & Training Plan, Mature Tree.
- C. Manage pests, nutrients, and water per local recommendations. Pay attention to weed control in this trial.

Collect the follow data for each tree in 2017.

- A. Root suckers: the number removed and counted, August.
- B. Yield: count all fruit per tree and weigh (to the nearest 0.1 kg).
- C. Zonal leaf chlorosis: after Honeycrisp harvest, visually estimate the portion (%) of the canopy exhibiting symptoms.
- D. Trunk size: trunk circumference 30 cm above the graft union (mm), October.
- E. Status: 0=dead, 1=alive, and 2=missing data, October.

Pruning and Training Plan for the Tall Spindle System

Mature	Dormant	1. Limit tree height to 11.5' (3.6m) by annually cutting leader back to a weak
Tree		fruitful side branch.
		 Annually, remove at least 2 limbs, including lower tier scaffolds, that are more than ³/₄" in diameter using a bevel cut.
		3. Simplify each remaining branch on the tree so that it is columnar with no major side branches.
		4. Shorten branches that extend into the row to facilitate movement of
		equipment and preserve fruit quality on the lower limbs.
	Late May	Chemically thin, and then follow up with hand thinning to appropriate levels to ensure regular annual cropping and adequate fruit size. (Target = 120-150 fruits/tree)
	August	Lightly summer prune to encourage light penetration and maintain pyramidal tree shape.

Please note that B.70-20-20 has been removed from the trial. Trees should be removed from the planting.

			Data Subm	ission Prote	ocol			
		Submit	: data via email (autio	@umass.edu) by	January 15, 2	2017.		
		STATE	2010 Apple Roo	otstock Trial	DATA F	OR 2016		
Honeycrisp B.9 1 Honeycrisp B.9 1 Honeycrisp B.9 1 Honeycrisp B.9 1 Honeycrisp M.26EMLA 4	2010 during dead, 1= s Status 2010 alive, 2= (see (those with missing	ucker per per during dead, 1= sucker (Aug, tree tree 2011 alive, 2= (Aug,		rr per during dead, 1= suc e tree Zon3 col13 allev.2= (A 13, [2013, chlorosic (those with missing 20 0, no.) [2013, %) status = 0 data no X X 1 1 X 1 2 X X 1 2 	reg tt tt tt ker per per et (1, (2014, (2014, chloross (thet) -) kg) no.) (2014, khloross (thet) - kg) no.) (2014, khloross (thet) - x x x - x 	e with missing 2015, (2015, (201	e Zonal 2015 alive, 2= (Au	ver per circ. which died g, tree tree Zonal (fall) during 2016 G, (2016, (2016, chlorosis 2016, (kg) (uring 2016) thore with J kg) no.j (2016, %) mm) status = 0) X X X X X X X - - - - - - - X X X X - - - - - - - - - - - - -
	2010 (those alive, 2=	Comments regarding 2012 Root trees which Status (0) sucker Vield per Vield per died during dead, 1 res 2011 (box alive, 2* 2011, (2011) (2011) (2011) (2011) x X X X 1 0 X X X 1 X X X Voles 0 X X Voles 0 . X X Voles . .	sucker Yield per Yield per died during dead, 1= st (Aug. tree tree 2012 (chose alive, 2= (2012, (2012, (2012, with status = missing 2 no.) kg no.) kg x X X X X X X X 	Comments regarding 201 oot tress which Status tress which Status outget tree 2013 (toose ailve, 1000se ailve, 100	1 (0= Root 1= sucker Yield per Yield per 2= (Aug, tree tree ng 2014, (2014, (2014,)	2014 (hose alive, 2= (Aug. t vith status = missing 2015, (2 0) data no.) 1 X 0 . 1 X 1 X	Comments regarding 2016 Trees which Status (0 Id per Vield per died during dead, 1 res tree tree vield 2 015, (2015, with status = missing (2015, with status = (2015, 1 missing (2015, 1 no. 0 data no.	(Aug, tree tree circ. (fall, 2016 (those
	Status 2010:	0 = died after it was clearly 1 = alive 2 = considered to be a non	r growing well -data tree because of human error (lik	4 = leafed o	out but quickly shut do		ported	
	When a d	ata point is missi	ing, insert a period	in that cell, bu	t do not re	place zeros v	with periods.	
			DATA FO	RMAT: Exce				
		Rootsto	ock Codes: (do not ind	clude spaces in th	e rootstock ı	name)		
B.9 B.10 B.7-3-150	B.7-20-21 B.64-194 B.67-5-32	B.71-7-22 G.4	41NG.202TC41TCG.935N202NG.935TC	CG.2034 CG.3001 CG.4003	CG.4004 CG.4013 CG.4214	CG.4814 CG.5087 CG.5222	PiAu9-90 PiAu51-11 Supp.3	M.9Pajam2 M.9T337 M.26EMLA

Table 1. Rootstock means for trunk cross-sectional area, root suckers, zonal chlorosis, yield per tree, yield efficiency, and fruit size of Honeycrisp apple trees in the 2010 NC-140 Honeycrisp Apple Rootstock Trial. Means are based on data from BC, CH, IA MA, MI, MN, NJ, NS, NY, and WI. All values are least-squares means, adjusted for missing subclasses.^z

							Cumulative		
	Trunk cross-	Cumulative	Zonal			Yield	yield		
	sectional	root suckers	chlorosis	Yield per	Cumulative	efficiency	efficiency		Average
	area (2015,	(2010-15,	(% canopy	tree (2015,	yield per tree	(2015,	(2011-15,	Fruit weight	Fruit weight
Rootstock	cm²)	no./tree)	affected)	kg)	(2011-15, kg)	kg/cm ² TCA)	kg/cm ² TCA)	(2015, g)	(2012-15, g)
B.9	7.2	4.7	25.1	8.0	21.9	1.2	3.1	217	204
B.10	10.9	1.2	20.7	14.4	34.9	1.3	3.2	223	217
B.7-3-150	23.1	1.6	17.1	15.9	38.2	0.7	1.7	250	241
B.7-20-21	24.0	2.2	21.6	15.9	39.6	0.7	1.7	240	227
B.64-194	26.0	1.1	23.9	17.1	40.3	0.6	1.5	250	239
B.67-5-32	23.1	1.4	19.6	14.3	31.5	0.6	1.4	242	235
B.70-6-8	22.5	1.5	20.5	14.3	37.1	0.6	1.6	242	226
B.71-7-22	2.7	2.9	26.5	2.8	7.1	1.0	2.8	201	190
G.11	10.7	3.0	29.9	14.0	36.3	1.3	3.4	232	218
G.41N	11.7	0.6	21.6	14.7	37.7	1.3	3.2	233	226
G.41TC	11.7	2.9	30.5	15.5	36.3	1.3	3.1	227	241
G.202N	20.0	11.7	27.2	17.6	45.3	0.9	2.3	219	216
G.202TC	13.2	9.6	23.7	13.6	35.9	1.1	2.8	225	201
G.935N	14.1	9.5	38.1	15.0	42.4	1.1	3.0	233	213
G.935TC	11.9	10.8	29.0	14.2	36.4	1.2	3.1	221	209
CG.2034	7.4	2.3	37.1	7.2	21.3	1.0	2.8	214	218
CG.4003	9.0	1.1	21.7	10.4	29.2	1.2	3.4	196	199
CG.4004	19.9	6.3	25.3	19.8	54.3	1.0	2.8	242	237
CG.4013	15.8	11.3	32.9	15.4	32.3	1.0	2.2	223	217
CG.4214	13.4	15.4	32.2	16.6	41.9	1.2	3.2	219	217
CG.4814	16.1	9.9	47.1	14.8	42.2	0.9	2.6	220	213
CG.5087	15.6	4.7	40.9	17.6	45.7	1.2	2.9	212	209
Supp.3	10.7	3.2	50.1	9.3	26.5	0.8	2.5	223	208
PiAu 9-90	19.1	2.3	63.4	9.1	22.1	0.5	1.2	191	176
PiAu 51-11	18.3	2.6	25.7	14.1	32.6	0.8	1.9	242	235
M.9 NAKBT337	11.0	6.9	25.3	12.2	33.0	1.1	3.0	235	226
M.9 Pajam 2	12.0	14.4	29.6	12.2	32.3	1.0	2.6	228	216
M.26 EMLA	13.6	4.3	26.3	13.4	32.2	1.0	2.4	236	225
Estimated HSD	2.4	4.0	10.1	3.5	5.7	0.2	0.4	23	16

²Mean separation in columns by Tukey's HSD (P = 0.05). HSD was calculated based on the average number of observations per mean.

Rootstock	BC	СН	IA	MA	MI	MN	NJ	NS	NY	WI
B.9	6.2	6.6	4.3	7.6	7.8	8.9	6.5	8.0	7.3	8.8
B.10	9.0	10.7	6.8	12.7	11.0	11.1	11.1	11.4	13.9	11.0
B.7-3-150	14.0	15.5	20.3	26.2	20.4	29.7	34.4	17.8	29.4	23.5
B.7-20-21	17.1	13.0	16.4	22.7	19.5	27.8	37.4	29.6	28.8	28.1
B.64-194	13.9	14.6	17.5	29.6	28.8	26.1	35.7	30.7	31.5	31.8
B.67-5-32	16.3	14.9	18.6	26.9	27.4	26.0	31.3	21.9	24.6	23.3
B.70-6-8	13.5	14.5	18.9	26.9	17.8	25.9	32.2	20.8	31.5	23.1
B.71-7-22	1.7	3.7	2.2	2.1	3.2	3.9	1.8	1.7	3.3	3.1
G.11	7.6	10.1	7.8	10.7	10.9	11.9	14.6	9.7	12.0	11.9
G.41N	10.8	9.2	7.6	11.7	11.3	13.0	13.3	11.6	14.7	13.8
G.41TC	9.6	8.4	8.8	11.1	13.5	15.0	15.5	12.0	11.2	12.0
G.202N	16.1	10.9	12.3	24.3	17.0	22.1	31.0	21.2	21.6	23.4
G.202TC	8.7	8.8	9.2	15.8	10.7	14.2	16.6	11.1	26.3	11.1
G.935N	11.5	8.4	9.2	15.7	13.6	14.6	20.1	13.5	17.9	16.2
G.935TC	8.4	6.4	6.4	11.0	11.1	12.9	19.9	14.5	15.2	13.2
CG.2034	7.7	6.2	5.8	8.1	7.8	7.4	9.1	7.1	6.7	8.3
CG.3001	14.3		13.9	24.5	12.4	15.4	26.9	17.8	22.5	12.8
CG.4003	6.6	7.3	6.0	8.8	7.9	8.8	10.8	8.0	15.7	9.7
CG.4004	15.1	12.5	11.0	21.8	18.2	21.8	28.3	26.3	21.1	23.2
CG.4013	8.9	12.6	17.3	15.8	17.2	11.9	27.7	14.6	23.3	8.4
CG.4214	8.0	6.8	9.3	17.6	14.9	14.2	20.4	15.0	16.5	11.6
CG.4814	12.3	10.2	14.8	15.6	15.0	16.1	26.6	16.4	18.6	15.6
CG.5087	13.6	7.7	9.7	15.5	14.5	15.5	28.3	13.9	19.8	17.4
CG.5222	13.6	8.2		18.9	15.6	15.5	24.5	19.8	17.8	13.8
Supp.3	8.0	9.6	7.6	10.6	10.2	9.2	17.7	10.2	14.0	9.2
PiAu 9-90	16.5	16.0	9.7	21.4	15.5	14.6	35.1	15.4	29.6	16.7
PiAu 51-11	9.3	13.1	15.5	18.9	20.5	17.7	32.2	14.8	22.7	17.9
M.9 NAKBT337	7.8	8.2	8.4	12.1	10.5	12.0	15.9	10.3	14.6	10.8
M.9 Pajam 2	10.0	8.4	8.3	11.1	13.2	11.7	17.5	11.8	14.2	14.2
M.26 EMLA	10.9	11.6	10.2	12.3	14.1	13.9	20.0	15.5	14.6	12.6
Estimated HSD	4.9	4.4	6.2	7.8	6.8	8.1	6.6	9.3	10.9	8.9

^zMean separation in columns by Tukey's HSD (*P* = 0.05). HSD was calculated based on the average number of observations per mean.

Rootstock	BC	СН	IA	MA	MI	MN	NJ	NS	NY	WI
B.9	16.4	5.4	18.5	22.9	27.4	22.6	12.8	24.5	41.0	27.9
B.10	24.5	8.8	26.2	39.3	36.4	36.1	22.8	38.3	71.7	45.3
B.7-3-150	27.4	8.8	29.4	37.3	36.4	47.0	35.7	32.9	76.0	50.7
B.7-20-21	30.5	5.7	30.9	45.1	41.8	39.9	32.3	56.1	71.7	42.0
B.64-194	23.8	9.0	20.3	39.2	38.7	44.8	35.9	62.1	68.7	60.5
B.67-5-32	29.3	6.0	19.2	37.6	38.2	29.5	23.0	37.9	55.0	39.5
B.70-6-8	24.7	7.5	26.1	49.1	31.3	45.3	32.0	35.5	71.1	48.6
B.71-7-22	5.2	1.5	10.3	5.0	8.0	8.6	6.0	3.7	13.2	9.2
G.11	21.3	10.0	35.2	40.8	40.1	47.0	30.9	24.0	63.6	50.6
G.41N	28.1	5.8	31.2	45.0	36.4	45.6	22.3	41.2	68.2	53.1
G.41TC	25.4	6.2	26.0	31.4	33.4	44.7	18.4	71.1	60.4	46.0
G.202N	37.5	7.0	24.4	77.0	43.5	48.6	33.5	60.3	70.5	51.1
G.202TC	25.1	13.1	33.5	49.4	35.5	42.3	30.4	27.0	67.4	35.4
G.935N	36.7	8.5	28.2	66.3	43.9	40.8	31.5	31.7	64.1	72.1
G.935TC	19.8	6.0	25.3	33.4	41.9	36.1	44.7	32.1	64.9	59.5
CG.2034	20.8	3.3	19.2	23.3	20.8	24.9	21.2	15.7	28.0	35.5
CG.3001	35.2		48.8	86.7	26.3	44.4	32.6	63.1	90.2	54.2
CG.4003	20.4	13.1	25.5	33.8	26.2	26.6	27.3	26.8	52.8	39.6
CG.4004	46.1	10.6	43.6	62.6	42.1	59.2	50.8	77.2	74.8	76.0
CG.4013	23.3	5.5	22.5	51.5	36.5	38.5	28.2	36.6	60.2	19.6
CG.4214	32.1	8.4	28.2	38.9	45.4	51.1	36.8	51.2	75.6	51.8
CG.4814	41.1	7.3	32.0	44.8	38.7	53.3	40.1	37.5	82.8	44.6
CG.5087	41.2	8.4	34.4	42.6	39.3	53.1	46.5	52.8	76.9	61.4
CG.5222	28.5	6.0		37.5	37.1	36.7	32.9	54.3	66.5	48.3
Supp.3	24.3	6.6	11.3	25.1	26.7	25.8	22.4	21.4	64.1	37.6
PiAu 9-90	24.6	7.3	9.8	13.4	18.9	15.8	30.0	22.9	55.4	22.6
PiAu 51-11	19.7	6.2	30.0	34.0	32.5	35.8	28.2	34.2	68.7	37.1
M.9 NAKBT337	23.6	8.0	28.2	39.7	34.9	37.6	34.0	24.4	63.5	36.1
M.9 Pajam 2	24.9	5.6	20.6	29.9	39.2	30.3	34.5	23.3	58.7	56.4
M.26 EMLA	27.3	3.2	33.6	28.9	36.6	31.0	25.5	41.3	53.3	41.1
Estimated HSD	13.2	5.6	13.3	21.7	16.5	16.9	14.2	29.6	23.3	20.8

Rootstock	BC	СН	IA	MA	MI	MN	NJ	NS	NY	WI
B.9	2.5	0.9	4.5	3.0	3.6	2.6	1.9	3.3	5.7	3.2
B.10	2.8	0.8	3.9	3.1	3.3	3.3	2.0	3.5	5.2	4.2
B.7-3-150	2.0	0.6	1.5	1.4	1.8	1.6	1.1	1.9	2.6	2.3
B.7-20-21	1.8	0.5	2.0	2.1	2.2	1.5	0.9	1.9	2.5	1.6
B.64-194	1.7	0.6	1.2	1.3	1.4	1.8	1.0	2.0	2.3	1.9
B.67-5-32	1.8	0.5	1.1	1.5	1.4	1.2	0.8	1.7	2.4	1.7
B.70-6-8	1.8	0.5	1.5	1.9	1.8	1.8	1.0	1.7	2.3	2.1
B.71-7-22	2.9	0.4	4.7	2.5	2.5	2.4	2.9	2.0	4.5	3.1
G.11	2.7	1.0	4.6	3.8	3.7	4.1	2.2	2.4	5.3	4.3
G.41N	2.6	0.6	4.2	3.8	3.2	3.6	1.7	3.5	4.7	4.0
G.41TC	2.6	0.7	2.9	2.8	2.5	3.0	1.2	6.4	5.3	3.9
G.202N	2.3	0.7	2.1	3.2	2.5	2.4	1.1	2.8	3.9	2.3
G.202TC	2.8	1.5	3.7	3.1	3.3	3.0	1.8	2.3	3.4	3.2
G.935N	3.2	1.1	3.2	4.2	3.3	2.9	1.6	2.3	3.6	4.5
G.935TC	2.4	0.9	4.1	3.0	3.9	2.8	2.2	2.3	4.4	4.8
CG.2034	2.6	0.6	3.4	2.7	2.6	3.3	2.3	2.3	4.2	4.3
CG.3001	2.4		3.6	3.5	2.1	2.9	1.2	3.7	4.0	4.5
CG.4003	3.2	1.8	4.2	3.8	3.2	3.0	2.5	3.3	4.2	4.2
CG.4004	2.9	0.9	4.0	2.9	2.3	2.7	1.8	3.1	3.6	3.4
CG.4013	2.6	0.4	1.5	3.1	2.2	3.3	1.0	2.5	2.8	2.3
CG.4214	4.0	1.2	3.1	2.2	3.1	3.6	1.9	3.4	4.6	4.5
CG.4814	3.3	0.7	2.3	2.9	2.6	3.4	1.5	2.2	4.5	2.9
CG.5087	3.0	1.1	3.6	2.6	2.7	3.4	1.6	3.8	4.1	3.6
CG.5222	2.1	0.7		2.0	2.4	2.4	1.3	2.8	3.9	3.6
Supp.3	3.0	0.7	1.5	2.3	2.7	2.8	1.2	1.9	4.5	4.0
PiAu 9-90	1.6	0.5	1.1	0.6	1.2	1.2	0.9	1.2	1.9	1.3
PiAu 51-11	2.1	0.5	2.1	1.8	1.6	2.0	0.9	2.5	3.1	2.2
M.9 NAKBT337	2.9	1.0	3.4	3.3	3.4	3.1	2.1	2.5	4.6	3.4
M.9 Pajam 2	2.5	0.7	2.5	2.9	3.0	2.6	2.0	2.0	4.0	4.1
M.26 EMLA	2.5	0.3	3.3	2.4	2.7	2.2	1.3	2.7	3.7	3.3
Estimated HSD	0.9	0.7	1.8	1.1	1.1	1.1	0.8	1.7	1.6	1.5

^zMean separation in columns by Tukey's HSD (*P* = 0.05). HSD was calculated based on the average number of observations per mean.

Rootstock	BC	СН	IA	MA	MI	MN	NJ	NS	NY	WI
B.9	247	164	154	253	216	158	256	168	218	202
B.10	280	171	170	243	219	160	287	170	245	221
B.7-3-150	291	178	216	283	241	197	304	170	284	242
B.7-20-21	263	185	192	247	210	174	289	178	277	257
B.64-194	270	169	211	259	254	190	297	196	289	253
B.67-5-32	271	184	204	267	245	202	276	190	262	248
B.70-6-8	266	182	204	263	194	184	267	178	280	243
B.71-7-22	217	188	131	213	221	142	266	157	194	169
G.11	253	166	163	265	242	141	300	161	258	225
G.41N	294	180	176	266	241	163	303	169	266	208
G.41TC	290	171	199	259	259	175	300	306	261	189
G.202N	313	172	168	258	207	158	270	154	250	207
G.202TC	227	163	199	228	182	162	292	138	249	174
G.935N	284	171	174	237	217	155	298	163	241	194
G.935TC	274	172	173	232	204	141	290	157	255	191
CG.2034	281	195	184	248	234	156	295	162	239	191
CG.3001	314		205	249	190	140	301	180	279	222
CG.4003	273	180	147	216	238	122	284	137	209	181
CG.4004	304	176	196	258	222	180	303	253	253	230
CG.4013	273	171	207	233	215	162	288	167	262	195
CG.4214	272	175	188	250	224	146	297	164	255	201
CG.4814	292	176	213	227	221	141	294	123	254	189
CG.5087	279	161	179	251	222	146	285	155	243	170
CG.5222	294	172		231	207	161	268	142	246	207
Supp.3	285	174	157	232	231	141	282	145	253	180
PiAu 9-90	223	161	139	148	183	107	251	121	239	188
PiAu 51-11	257	179	217	259	260	180	289	180	268	261
M.9 NAKBT337	283	167	190	256	226	160	315	171	261	229
M.9 Pajam 2	272	177	175	239	218	163	306	148	242	221
M.26 EMLA	269	180	192	238	268	170	319	148	244	227
Estimated HSD	52	35	37	43	79	42	49	68	38	46

^zMean separation in columns by Tukey's HSD (*P* = 0.05). HSD was calculated based on the average number of observations per mean.

Rootstock	Trunk cross- sectional area (2015, cm ²)	Cumulative root suckers (2010-15, no./tree)	Yield per tree (2015, kg)	Cumulative yield per tree (2011-15, kg)	Yield efficiency (2015, kg/cm ² TCA)	Cumulative yield efficiency (2011-15, kg/cm ² TCA)	Fruit weight (2015, g)	Average Fruit weight (2012-15 g)
B.9	15.3	7.8	11.0	34.7	0.7	2.2	190	181
B.10	30.3	1.7	18.0	45.8	0.6	1.6	215	209
B.7-3-150	59.0	2.0	19.0	52.7	0.4	1.1	209	205
B.7-20-21	7.5	1.2	1.5	5.3	0.2	0.9	126	127
B.64-194	62.4	5.9	21.9	49.5	0.4	0.9	224	208
B.67-5-32	63.2	4.0	19.2	51.6	0.3	0.8	217	208
B.70-6-8	62.7	1.1	21.4	57.0	0.4	1.1	210	204
B.71-7-22	9.1	4.6	5.6	16.6	0.7	2.0	190	183
G.11	33.2	2.8	15.4	54.1	0.5	1.8	229	219
G.41N	34.5	1.9	24.1	66.1	0.6	1.6	234	229
G.41TC	28.8	7.2	20.6	50.6	0.7	1.6	223	226
G.202N	41.0	8.3	23.1	59.2	0.7	1.7	219	207
G.202TC	29.7	10.6	17.4	49.9	0.6	1.8	196	184
G.935N	38.0	5.7	25.2	77.7	0.8	2.3	217	207
G.935TC	35.9	18.3	19.7	58.6	0.6	1.9	202	203
CG.2034	15.7	5.6	13.6	36.4	0.8	2.2	190	198
CG.3001	49.5	5.7	22.6	67.8	0.5	1.3	221	217
CG.4003	18.0	2.3	11.1	35.1	0.7	2.2	183	171
CG.4004	45.9	7.5	24.3	78.1	0.6	1.8	221	222
CG.4214	23.9	9.7	18.0	43.9	0.8	2.0	203	206
CG.4814	38.8	14.1	20.7	53.9	0.6	1.5	202	198
CG.5087	20.9	4.8	15.4	40.8	0.9	2.3	184	195
CG.5222	46.4	11.5	23.2	67.0	0.5	1.5	215	215
Supp.3	29.2	1.2	9.5	37.4	0.4	1.5	188	199
PiAu 9-90	72.7	10.8	11.9	30.3	0.2	0.6	196	187
PiAu 51-11	65.6	1.7	15.2	46.8	0.3	0.8	228	216
M.9 NAKBT337	30.4	9.3	17.6	51.7	0.7	2.0	211	207
M.9 Pajam 2	36.5	15.7	19.3	60.8	0.6	1.9	216	203
M.26 EMLA	52.8	1.0	18.4	59.0	0.4	1.2	233	222
Estimated HSD	10.8	9.6	9.5	14.9	0.3	0.4	31	20

Table 6. Rootstock means for trunk cross-sectional area, root suckers, yield per tree, yield efficiency, and fruit size of Fuji apple trees in the 2010 NC-140 Fuji Apple Rootstock Trial. Means are based on data from ID, KY, NC, and UT. All values are least-squares means, adjusted for missing subclasses.^z

Rootstock	CH	ID	KY	NC	PA	UT
B.9	14.3	21.5	15.1	7.9	16.3	16.7
B.10	20.9	31.9	37.3	20.9	33.2	31.2
B.7-3-150	28.4	42.8	82.4	48.2	59.6	62.3
B.7-20-21	3.6	5.5	14.0	1.8		8.6
B.64-194	25.4	55.9	71.3	55.5		66.9
B.67-5-32	20.6	61.5	68.4	55.2	57.2	67.6
B.70-6-8	24.6	48.1	78.2	61.4	69.8	63.0
B.71-7-22	5.3	8.2	8.2	7.7		12.0
G.11	19.4	28.2	43.3	23.2	21.0	38.2
G.41N		50.3	22.2	29.3		35.7
G.41TC	20.3	32.2	25.8	21.8		33.9
G.202N	23.5	35.5	63.4	28.4		36.7
G.202TC	19.7	31.5	42.6	20.7	24.9	23.9
G.935N	14.7	32.9	51.8	25.2	31.8	42.0
G.935TC	17.6	28.9	48.2	21.0		45.5
CG.2034		14.9	13.0	12.0		23.4
CG.3001		55.1	48.7	40.9		53.4
CG.4003	14.1	12.6	24.8	14.1		20.4
CG.4004	18.7	52.3	44.5	28.6		58.1
CG.4013			34.2	20.0		26.1
CG.4214	9.7	24.3	34.1	13.7		23.3
CG.4814	10.2	34.2	50.4	36.5		34.5
CG.5087	9.2	19.3	33.5	6.4		24.6
CG.5222	19.6	52.2	56.0	31.8	34.6	45.6
Supp.3	17.2	21.0	39.3	23.5		32.8
PiAu 9-90	46.2	36.9	97.7	67.0		89.3
PiAu 51-11	25.6	54.9	79.0	55.1	66.1	73.8
M.9 NAKBT337	12.5	24.7	44.8	22.6	30.5	29.5
M.9 Pajam 2	14.9	36.0	47.8	21.1	31.2	41.0
M.26 EMLA	22.8	50.3	64.4	43.9	49.3	52.7
Estimated HSD	13.3	19.3	29.7	19.9	14.2	19.0

Table 7. Trunk cross-sectional area (2015, cm²) of Fuji apple trees at individual planting locations in the 2010 NC-140 Fuji Rootstock Trial. All values are least-squares means, adjusted for missing subclasses.²

Table 8. Cumulative yield per tree (2011-15, kg) of Fuji apple trees at individual planting locations in the 2010 NC-140 Fuji Rootstock Trial. All values are least-squares means, adjusted for missing subclasses.^z

Rootstock	СН	ID	KY	NC	PA	UT
B.9	8.8	78.4	13.5	19.2	21.3	27.7
B.10	11.9	85.4	21.3	28.4	29.6	48.3
B.7-3-150	13.6	98.7	24.7	28.8	32.6	58.4
B.7-20-21	1.8	5.4	4.4	4.7		6.8
B.64-194	11.4	96.2	13.2	33.6		55.3
B.67-5-32	10.1	101.3	18.0	30.6	40.3	56.4
B.70-6-8	14.2	113.9	20.8	36.4	37.0	57.1
B.71-7-22	5.8	30.2	5.6	13.7		17.1
G.11	19.6	93.4	23.8	43.1	39.0	56.1
G.41N		155.4	20.5	41.7		46.7
G.41TC	14.6	109.7	21.2	26.0		45.3
G.202N	17.5	111.3	25.0	47.4		53.0
G.202TC	16.5	96.5	22.2	37.5	38.1	43.5
G.935N	10.7	143.4	28.4	58.0	56.7	81.0
G.935TC	16.0	95.9	17.2	50.0		71.3
CG.2034		66.4	10.1	20.1		50.9
CG.3001		148.7	18.9	41.7		61.9
CG.4003	12.4	48.1	22.3	34.6		35.8
CG.4004	10.7	151.0	35.2	68.4		57.8
CG.4013			16.9	34.1		32.4
CG.4214	10.8	102.6	14.3	25.2		33.4
CG.4814	8.0	106.0	25.7	33.9		49.5
CG.5087	15.0	66.2	26.6	24.9		46.1
CG.5222	21.7	121.7	36.2	46.0	38.4	63.9
Supp.3	12.8	59.0	20.0	30.7		39.9
PiAu 9-90	12.1	42.6	11.8	20.2		46.6
PiAu 51-11	14.0	91.7	16.6	34.1	31.2	44.9
M.9 NAKBT337	10.0	94.5	22.4	45.5	41.3	44.5
M.9 Pajam 2	8.9	102.8	23.3	55.1	43.3	62.4
M.26 EMLA	13.6	105.5	24.9	49.6	43.4	55.8
Estimated HSD	8.3	41.2	15.4	29.4	25.3	27.7

Table 9. Cumulative yield efficiency (2011-15, kg/cm² trunk cross-sectional area) of Fuji apple trees at individual planting locations in the 2010 NC-140 Fuji Rootstock Trial. All values are least-squares means, adjusted for missing subclasses.²

Rootstock	CH	ID	KY	NC	PA	UT
B.9	0.7	3.7	1.0	2.4	1.3	1.6
B.10	0.6	2.8	0.6	1.3	0.9	1.6
B.7-3-150	0.5	2.4	0.3	0.6	0.5	0.9
B.7-20-21	0.5	1.0	0.3	1.6		0.7
B.64-194	0.5	1.7	0.2	0.7		0.8
B.67-5-32	0.5	1.7	0.3	0.6	0.7	0.9
B.70-6-8	0.6	2.4	0.3	0.6	0.5	0.9
B.71-7-22	1.2	3.6	0.7	2.1		1.5
G.11	1.1	3.3	0.6	1.9	1.8	1.5
G.41N		3.0	0.8	1.4		1.4
G.41TC	0.8	3.3	0.7	1.2		1.3
G.202N	0.8	3.2	0.4	1.8		1.6
G.202TC	0.8	3.2	0.5	1.8	1.5	1.8
G.935N	0.8	4.3	0.6	2.3	1.9	1.9
G.935TC	0.9	3.2	0.4	2.4		1.6
CG.2034		4.2	0.6	1.5		2.3
CG.3001		2.7	0.3	1.0		1.1
CG.4003	1.0	3.7	0.9	2.3		1.8
CG.4004	0.5	2.9	0.8	2.4		1.0
CG.4013			0.5	1.9		1.3
CG.4214	1.1	4.2	0.4	1.8		1.5
CG.4814	0.8	3.1	0.5	0.9		1.5
CG.5087	1.7	3.4	0.8	3.0		2.0
CG.5222	1.1	2.4	0.7	1.5	1.1	1.5
Supp.3	0.7	2.9	0.5	1.4		1.2
PiAu 9-90	0.3	1.1	0.2	0.4		0.5
PiAu 51-11	0.6	1.7	0.2	0.7	0.5	0.6
M.9 NAKBT337	0.8	3.9	0.5	2.1	1.4	1.4
M.9 Pajam 2	0.6	2.9	0.5	2.5	1.3	1.6
M.26 EMLA	0.6	2.2	0.4	1.1	0.9	1.1
Estimated HSD	0.5	0.9	0.5	1.2	0.5	0.6

Table 10. Average fruit size (2011-15, g) of Fuji apple trees at individual planting locations in the 2010 NC-140 Fuji Rootstock Trial. All values are least-squares means, adjusted for missing subclasses.^z

Rootstock	ID	KY	NC	PA	UT		
B.9	200	174	192	170	158		
B.10	229	194	214	202	198		
B.7-3-150	229	167	219	212	207		
B.7-20-21	104	131	140		135		
B.64-194	251	159	213		209		
B.67-5-32	250	164	220	210	197		
B.70-6-8	237	165	210	209	204		
B.71-7-22	182	184	173		192		
G.11	240	184	237	194	218		
G.41N	301	189	224		204		
G.41TC	262	169	259		215		
G.202N	248	173	211		196		
G.202TC	204	171	192	168	167		
G.935N	243	170	215	212	199		
G.935TC	218	173	221		201		
CG.2034	228	178	189		197		
CG.3001	281	181	200		208		
CG.4003	151	178	192		163		
CG.4004	280	180	207		219		
CG.4013		165	198		179		
CG.4214	227	186	218		194		
CG.4814	238	165	204		187		
CG.5087	256	170	196		158		
CG.5222	282	170	215	187	194		
Supp.3	212	200	184		202		
PiAu 9-90	192	159	184		212		
PiAu 51-11	268	163	210	223	224		
M.9 NAKBT337	224	185	222	204	198		
M.9 Pajam 2	243	163	201	200	207		
M.26 EMLA	260	185	231	213	214		
Estimated HSD	51	42	37	28	32		
^z Mean separation in columns by Tukey's HSD ($P = 0.05$). HSD was calculated based on the average number of observations per mean.							

Rootstocks distributed among seven vigor classes based on 2015 trunk cross-sectional area. Within class, rootstocks are ordered highest to lowest based on cumulative (2011-15) yield efficiency. Honeycrisp data are from BC, CH, IA, MA, MI, MN, NJ, NS, NY, and WI. Fuji data are from ID, KY, NC, and UT. All values are least-squares means, adjusted for missing subclasses.

	HONEYCR	ISP			FUJI		
			Cumulative				Cumulative
			yield				yield
		Trunk cross-	efficiency			Trunk cross-	efficiency
		sectional area	(2011-15,			sectional area	(2011-15,
Vigor category	Rootstock	(2015, cm ²)	kg/cm ² TCA)		Rootstock	(2015, cm ²)	kg/cm ² TCA)
Large semi-dwarf	B.7-20-21	24.0	1.7	Large semi-dwarf	PiAu 9-90	72.7	0.6
	B.64-194	26.0	1.5	Moderate semi-dwarf	B.70-6-8	62.7	1.1
Moderate semi-dwarf	CG.4004	19.9	2.8		B.64-194	62.4	0.9
	G.202N	20.0	2.3		B.67-5-32	63.2	0.8
	B.7-3-150	23.1	1.7		PiAu 51-11	65.6	0.8
	B.70-6-8	22.5	1.6	Small semi-dwarf	CG.4004	45.9	1.8
	B.67-5-32	23.1	1.4		CG.5222	46.4	1.5
	PiAu 9-90	19.1	1.2		CG.3001	49.5	1.3
Small semi-dwarf	CG.5087	15.6	2.9		M.26 EMLA	52.8	1.2
	CG.4814	16.1	2.6		B.7-3-150	59.0	1.1
	CG.4013	15.8	2.2	Large dwarf	G.935N	38.0	2.3
	PiAu 51-11	18.3	1.9		G.935TC	35.9	1.9
Large dwarf	CG.4214	13.4	3.2		M.9 Pajam 2	36.5	1.9
	G.935TC	11.9	3.1		G.202N	41.0	1.7
	G.935N	14.1	3.0		CG.4814	38.8	1.5
	G.202TC	13.2	2.8	Moderate dwarf	M.9 NAKBT337	30.4	2.0
	M.9 Pajam 2	12.0	2.6		G.202TC	29.7	1.8
	M.26 EMLA	13.6	2.4		G.11	33.2	1.8
Moderate dwarf	G.11	10.7	3.4		G.41N	34.5	1.6
	B.10	10.9	3.2		G.41TC	28.8	1.6
	G.41N	11.7	3.2		B.10	30.3	1.6
	G.41TC	11.7	3.1		Supp.3	29.2	1.5
	M.9 NAKBT337	11.0	3.0	Small Dwarf	CG.5087	20.9	2.3
	Supp.3	10.7	2.5		CG.4003	18.0	2.2
Small dwarf	CG.4003	9.0	3.4		В.9	15.3	2.2
	В.9	7.2	3.1		CG.2034	15.7	2.2
	CG.2034	7.4	2.8		CG.4214	23.9	2.0
Sub-dwarf	B.71-7-22	2.7	2.8	Sub-dwarf	B.71-7-22	9.1	2.0
					B.7-20-21	7.5	0.9